Applying Ricci Flow to High Dimensional Manifold Learning
نویسندگان
چکیده
Traditional manifold learning algorithms often bear an assumption that the local neighborhood of any point on embedded manifold is roughly equal to the tangent space at that point without considering the curvature. The curvature indifferent way of manifold processing often makes traditional dimension reduction poorly neighborhood preserving. To overcome this drawback we propose a new algorithm called RF-ML to perform an operation on the manifold with help of Ricci flow before reducing the dimension of manifold.
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملGEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW
The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملTwo-dimensional Ricci flow as a stochastic process
We prove that, for a two-dimensional Riemannian manifold, the Ricci flow is obtained by a Wiener process.
متن کاملKähler-ricci Flow on a Toric Manifold with Positive First Chern Class
In this note, we prove that on an n-dimensional compact toric manifold with positive first Chern class, the Kähler-Ricci flow with any initial (S)-invariant Kähler metric converges to a Kähler-Ricci soliton. In particular, we give another proof for the existence of Kähler-Ricci solitons on a compact toric manifold with positive first Chern class by using the Kähler-Ricci flow. 0. Introduction. ...
متن کامل